19 research outputs found

    Design and Development of ReMoVES Platform for Motion and Cognitive Rehabilitation

    Get PDF
    Exergames have recently gained popularity and scientific reliability in the field of assistive computing technology for human well-being. The ReMoVES platform, developed by the author, provides motor and cognitive exergames to be performed by elderly or disabled people, in conjunction with traditional rehabilitation. Data acquisition during the exercise takes place through Microsoft Kinect, Leap Motion and touchscreen monitor. The therapist is provided with feedback on patients' activity over time in order to assess their weakness and correct inaccurate movement attitudes. This work describes the technical characteristics of the ReMoVES platform, designed to be used by multiple locations such as rehabilitation centers or the patient's home, while providing a centralized data collection server. The system includes 15 exergames, developed from scratch by the author, with the aim of promoting motor and cognitive activity through patient entertainment. The ReMoVES platform differs from similar solutions for the automatic data processing features in support of the therapist. Three methods are presented: based on classic data analysis, on Support Vector Machine classification, and finally on Recurrent Neural Networks. The results describe how it is possible to discern patient gaming sessions with adequate performance from those with incorrect movements with an accuracy of up to 92%. The system has been used with real patients and a data database is made available to the scientific community. The aim is to encourage the dissemination of such data to lay the foundations for a comparison between similar studies

    The SPTLC1 p.S331 mutation bridges sensory neuropathy and motor neuron disease and has implications for treatment

    Get PDF
    Aims SPTLC1-related disorder is a late onset sensory-autonomic neuropathy associated with perturbed sphingolipid homeostasis which can be improved by supplementation with the serine palmitoyl-CoA transferase (SPT) substrate, l-serine. Recently, a juvenile form of motor neuron disease has been linked to SPTLC1 variants. Variants affecting the p.S331 residue of SPTLC1 cause a distinct phenotype, whose pathogenic basis has not been established. This study aims to define the neuropathological and biochemical consequences of the SPTLC1 p.S331 variant, and test response to l-serine in this specific genotype. Methods We report clinical and neurophysiological characterisation of two unrelated children carrying distinct p.S331 SPTLC1 variants. The neuropathology was investigated by analysis of sural nerve and skin innervation. To clarify the biochemical consequences of the p.S331 variant, we performed sphingolipidomic profiling of serum and skin fibroblasts. We also tested the effect of l-serine supplementation in skin fibroblasts of patients with p.S331 mutations. Results In both patients, we recognised an early onset phenotype with prevalent progressive motor neuron disease. Neuropathology showed severe damage to the sensory and autonomic systems. Sphingolipidomic analysis showed the coexistence of neurotoxic deoxy-sphingolipids with an excess of canonical products of the SPT enzyme. l-serine supplementation in patient fibroblasts reduced production of toxic 1-deoxysphingolipids but further increased the overproduction of sphingolipids. Conclusions Our findings suggest that p.S331 SPTLC1 variants lead to an overlap phenotype combining features of sensory and motor neuropathies, thus proposing a continuum in the spectrum of SPTLC1-related disorders. l-serine supplementation in these patients may be detrimental

    Direct-acting antivirals and hepatocellular carcinoma in chronic hepatitis C: A few lights and many shadows

    Get PDF
    With the introduction of direct-acting antiviral agents (DAA), the rate of sustained virological response (SVR) in the treatment of hepatitis C virus (HCV) has radically improved to over 95%. Robust scientific evidence supports a beneficial role of SVR after interferon therapy in the progression of cirrhosis, resulting in a decreased incidence of hepatocellular carcinoma (HCC). However, a debate on the impact of DAAs on the development of HCC is ongoing. This review aimed to analyse the scientific literature regarding the risk of HCC in terms of its recurrence and occurrence after the use of DAAs to eradicate HCV infection. Among 11 studies examining HCC occurrence, the de novo incidence rate ranged from 0 to 7.4% (maximum follow-up: 18 mo). Among 18 studies regarding HCC recurrence, the rate ranged from 0 to 54.4% (maximum "not well-defined" followup: 32 mo). This review highlights the major difficulties in interpreting data and reconciling the results of the included studies. These difficulties include heterogeneous cohorts, potential misclassifications of HCC prior to DAA therapy, the absence of an adequate control group, short follow-up times and different kinds of follow-up. Moreover, no clinical feature-based scoring system accounts for the molecular characteristics and pathobiology of the tumours. Nonetheless, this review does not suggest that there is a higher rate of de novo HCC occurrence or recurrence after DAA therapy in patients with previous HCV infection. \ua9 2018 The Author(s). Published by Baishideng Publishing Group Inc. All rights reserved

    Biophysical and motion features extraction for an effective home-based rehabilitation

    No full text
    In this paper, we describe ReMoVES (REmote MOnitoring Validation Engineering System) which is a newly developed platform for motion rehabilitation through serious-games and biophysical sensors. The main features of the system are highlighted: motion tracking capabilities are disclosed and compared with other solutions; the emotional state of the patient is evaluated with heart rate measurements and electrodermal activity monitoring during the execution of the functional exercises planned by the therapist. Preliminary results about the extraction of significant features from motion and biophysical data will be discussed: the personal rehabilitation program is meant to be performed at home by the patient himself while ReMoVES platform should deliver effective reports to the therapist about the training performance

    Definition of Motion and Biophysical Indicators for Home-Based Rehabilitation through Serious Games

    Get PDF
    In this paper, we describe Remote Monitoring Validation Engineering System (ReMoVES), a newly-developed platform for motion rehabilitation through serious games and biophysical sensors. The main features of the system are highlighted as follows: motion tracking capabilities through Microsoft Kinect V2 and Leap Motion are disclosed and compared with other solutions; the emotional state of the patient is evaluated with heart rate measurements and electrodermal activity monitored by Microsoft Band 2 during the execution of the functional exercises planned by the therapist. The ReMoVES platform is conceived for home-based rehabilitation after the hospitalisation period, and the system will deploy machine learning techniques to provide an automated evaluation of the patient performance during the training. The algorithms should deliver effective reports to the therapist about the training performance while the patient exercises on their own. The game features that will be described in this manuscript represent the input for the training set, while the feedback provided by the therapist is the output. To face this supervised learning problem, we are describing the most significant features to be used as key indicators of the patient’s performance along with the evaluation of their accuracy in discriminating between good or bad patient actions

    Database frail elders rehabilitation via ReMoVES

    No full text
    Data referring to the practice of ReMoVES exergames by an elders population are released. They are available for download on GitLab (https://gitlab.com/NumIP/removes-fe-data/ accessed on 1 April 2021). Data are licensed under the Creative Commons Attribution 4.0 International license (CC BY-NC-SA 4.0). The data release is because, despite the deep research interest in this field, publications that provide raw data acquired during the execution of exergames were not found

    A Solution for the Remote Care of Frail Elderly Individuals via Exergames

    No full text
    Internet of Things (IoT) solutions are a concrete answer to many needs in the healthcare framework since they enable remote support for patients and foster continuity of care. Currently, frail elderly people are among end users who most need and would benefit from IoT solutions from both a social and a healthcare point of view. Indeed, IoT technologies can provide a set of services to monitor the healthcare of the elderly or support them in order to reduce the risk of injuries, and preserve their motor and cognitive abilities. The main feature of IoT solutions for the elderly population is ease of use. Indeed, to fully exploit the potential of an IoT solution, patients should be able to autonomously deal with it. The remote-monitoring validation engineering system (ReMoVES) described here is an IoT solution that caters to the specific needs of frail elderly individuals. Its architecture was designed for use at rehabilitation centers and at patients’ homes. The system is user-friendly and comfortably usable by persons who are not familiar with technology. In addition, exergames enhance patient engagement in order to curb therapy abandonment. Along with the technical presentation of the solution, a real-life scenario application is described referring to sit-to-stand activity

    Monitoring game-based motor rehabilitation of patients at home for better plans of care and quality of life

    No full text
    This paper describes the biomedical, remote monitoring infrastructure developed and currently tested in the EU REHAB@HOME project to support home rehabilitation of the upper extremity of persons post-stroke and in persons with other neurological disorders, such as Multiple Sclerosis patients, in order to track their progress over therapy and improve their Quality of Life. The paper will specifically focus on describing the initial testing of the tele-rehabilitation system's components for patients' biomedical monitoring over therapy, which support the delivery and monitoring of more personalized, engaging plans of care by rehabilitation centers and services

    Unilateral spatial neglect rehabilitation supported by a digital solution: two case-studies.

    No full text
    Digital solutions for unilateral spatial neglect (USN) assessment and treatment are nowadays of great interest, because of both the possibility of combining them with other rehabilitation practices, and the easy-to-understand data and indicators they collect. The ReMoVES platform, developed in DITEN laboratories, is conceived in the Assistive Technologies framework and provides motor and cognitive exergames and activities to be performed in conjunction with traditional rehabilitation. In this work, two case-studies, related to the USN rehabilitation, are presented. The combination of cognitive therapy, delivered by the ReMoVES platform, and transcranial direct-current stimulation (tDCS) technique was used as rehabilitation treatment for both the patients. Data collected at the beginning or at the end of the rehabilitation process, or also during the treatment sessions, are shown and discussed in this paper. This work is a preliminary part of a wider one, that will be conducted involving many different rehabilitation centers, aimed at proving the validity of such an approach to USN treatments
    corecore